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Ever worried that we might be living in a simulation? Fret not, a recently pro-
posed rebuttal1 empirically proves that the richness of reality is downright im-
possible to simulate. This raises a paradox that is at the heart of this research: 

The Reality Gap : the gap between simulation and real-life. 

This gap poses a significant problem in robotics. 
Simulations remain essential in training many 
robot behvaiours. They are cheaper, faster and 
soemtimes more effective. Yet, given the Reality 
Gap,  robots trained in simulation don’t perform 
as well in real-life as they do in simulation. 

The most common approach to solve this issue 
is often some variant of adding noise to the 
training.  Robots can then be trained to cope 
with noisy environments, which the real world 
is. Yet, a systematic study of just how one 
should do so is less explored. Where should we 
add noise? How much? What type? 

Introduction

Research Question
How does the amount, location and type of noise added to a simulator 
that optimizes a robot called the Single-Legged Walker affect it’s ability to 
cross The Reality Gap?

Preliminary Hypothesis
Walkers trained with noise would develop behaviours that aren’t highly spe-
cialized to their training environment as the added noise keeps changing the en-
vironmental parameters.

As such, we hypothesized that
 1. Walkers trained with noise would better transfer their behvaiour to reality       
    compared to those trained without.
 2. Walkers trained with noise would be more robust (i.e. retain behavioural
        performance despite noisy input) than those trained without.
 3. More robust walkers would be better at crossing the Reality Gap.

What makes a Robot?
We need to answer this to be able to model the Walker in simulation, only after 
which can we start optimization.

A Dynamical System2 is all about how ‘something’ changes over time. To define 
a dynamical system, we need to (1) define what this ‘something’ is: i.e a collec-
tion of states and (2) how it changes over time: rules that map some input to 
change in said states. 

This research views a robot as a coupling of two dynamical systems: the Environ-
ment and the Walker robot. As such, modelling the Walker required a mathemati-
cal model of:
   - The Environment: A collection of ‘Environmental states’
   - The Walker: A collection of ‘Internal states’ 
   - Sensory mapping:  a rule that maps changes in Environmental states to 
           changes in Internal states.
   - Motor mapping: a rule that maps changes in Internal states to changes in 
              Environmental states 

Meet the Single-Legged Walker!
The Walker was then modelled in simulation and comprised of:
 Brain: Implements the rules that map (1) sensory inputs to changes in internal
                 states and (2) changes in internal states to motor ouputs. I used a
   Continuous-Time Recurrent Neural Network to create the brain of the 
   Walker. 

 Body: In simulation, this is a collection of internal states such as leg angle, leg      
                 length, foot state etc. (i.e. it is a bunch of code.) In real-life, this is a 
                 mechanical construction.  

 

 

 
 

 Environment: In simulation, this is a collection of environmental states such as
          force exerted on feet, etc. (again a bunch of code). In real-life, this 
     is simply everything around the robot walker. 

Preliminary Results

Some Immediate Takeaways

Fig 1: Illustration of the Reality Gap

Fig 2: Illustration of the coupled 
Dynamical System used to model 

and simulate the walker

Fig 3: Mechanical Construction of the Walker
Fig 4: Snippet of code that simulates body of Walker

Preliminary Methodology 

Preliminary 
Conditions

1. Control: Optimization without any noise (NN: No Noise)
2. Noise to Omega -  Leg Angular Velocity (WNO: With Noise Omega)
3. Noise to the parameters of the Neural Network (WNP: With Noise 
    Parameter)

Optimization 
in Simulation

- an Evolutionary Algorithm3  was used for optimzation: Essentially mimics 
biological evolution - Neural Networks are innitialized and ones that don’t 
perform well are weeded out over time: Survival of the Fittest style. 
- 10 evolutionary runs for each condition --> 10 x 3 total optimized robots

Fig 5: Visualization of the Evolution of the robot Controllers. 
Note how fitness of robot increases with generations (which 

is basically a measure of time)

Fig 6: Visualization of the the position of the robot with time 
as it walks. Note the rhythmic walking dynamic that is ob-

servable

Equalizer
- Gets a better measure of the performance value (i.e. Fitness) of the Walkers 
(average velocity) with longer walking duration (2000 ms). 
- Standardizes the environment where Fitness is meausured across conditions.

Isolator - Qualitatively determined the threshold for ‘good’ performing solution 
( > 0.58 mm/ms)

Robustness 
test in 

Simulation

- Tested Walker ability to maintain performance when placed in a different 
environment to where they were trained (noise added to Leg Force).
- Still in simulation: serves as an indicator of which solutions might perform 
better in real life.

Performance
test in

Real Life

- Test the evolved control mechanism (i.e. Neural Networks) with the real-life
Walker and compare Fitness value with simulated counter-part.
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Results showed that the No-Noise conditon (labelled NN) was more robust (flatter curve 
in Fig 7) than the Omega-Noise condition (WNO) and the Neural-Network Noise condi-
tion (WNP).This was counter-intutive and seemed to oppose my hypothesis, prompting 
a deeper dive into what happened during evolution (Figs 8 and 9).  

Robustness Test
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Fig 7: Robustness test results - plot of Fitness over Noise added

Fig 9: Fitness Distribution of the three conditions after isolation

What I found was that 
1. The NN condition had all 10 trials evolve to a ‘good’ (>0.58) fitness level; the 
WNP condition had 9/10 trials do so and the WNO condition had 5/10 do so.
2. The NN condition (blue in fig 9) had a greater percentage of its Walkers at 
higher fitness values compared to the noisy conditions (orange and green in fig 9)

1. There seems to exist a tradeoff between spending optimization energy getting good  
at the behaviour (walking) and trying to generalize behaviour to the noisy environ-
mental and internal conditions (i.e. developing ways to maintain behvaiour that isn’t 
dependent on these conditions)

2. The tradeoff results in an uneven fitness distribution at the end of optimization.

3. A characteristic of this trade-off and uneven fitness distribution is that some Walk-
ers evolve to be so good at walking that they retain their performance in the face of 
noisy conditions much better than the walkers specifically trained to be able to do so. 

Fig 8: Evolution curves for all three conditions

The black lines on each graph represent the aver-
age evolution curve, while the colored lines 
represent the curves for each of the 10 trials. 
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Next Steps
1. Evolve for longer (250 generations instead of 100) to ensure all conditions 
converge to a good and similar fitness level. (Hence, mitigating the issues of the 
trade-off metioned in the previous section) 

2. Finish construction of the real-life Walker and test real-life performance. I’ve 
completed the design and construction of the overall outer structure. Next step 
would be to wire up the parts and integrate them to evolved Neural Networks. 

3. Test Hypothesis 3 by comparing robsutness test results and real-life test re-
sults: is the robustness test I have created indeed a good indication of reality gap 
crossing ability?

4. Use results to further perfect methodology upon which I can permute condi-
tions and carry out the systematic study that I started out with the purpose of 
doing.

Fig 10: 3D design of real-life walker Fig 11: Outer-Construct of the real-life walker

Conclusion and Significance

Preliminary results I have collected suggest that No-Noise conditions are 
more robust to changes to environmental states than the Noise conditions. 

If after tweaking the methodology and conducting the real-life test (as de-
scribed in the ‘Next Steps’ section), the No-Noise condition continues to be 
more robust and transferable - given that several4,5 other papers show train-
ing with noise increasing robustness and transferability -  it suggests that the 
location, type and amount of noise added really does matter: i.e. there is a 
sweet-spot collection of these parameters where transferability and robust-
ness is boosted by noisy training. 

This makes my Research Question all the more pertinent and useful in the 
conscientious design of simulations that ensure better behaviour tranferance 
to reality.
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